$ \newcommand{\classe}{\square} \newcommand{\hierarchie}{\square \raise 3pt{\moveleft 3pt \square}} \DeclareMathOperator{\ou}{\vdots} \DeclareMathOperator{\correlation}{\ou} \newcommand{\analyse}{\space :: \space} \newcommand{\relation}{{\rm R}} \DeclareMathOperator{\et}{R} \newcommand{\fonction}{\varphi} \newcommand{\inclut}{\rhd} \newcommand{\entre}{\lhd} \newcommand{\mutation}{¡} \newcommand{\semiotique}{\gamma \deg g \deg} \newcommand{\plan}{_\star g\deg} \newcommand{\plancontenu}{\gamma \deg} \newcommand{\planexpression}{g \deg} \newcommand{\planinterne}{\interne \plan} \newcommand{\planexterne}{\externe \plan} \newcommand{\plandenotatif}{\externe \planexpression} \newcommand{\planconnotatif}{\externe \plancontenu} \newcommand{\plansemiologique}{_{2\star} g \deg} \newcommand{\planmetasemiologique}{_{3\star} g \deg} \newcommand{\plansemiologiqueinterne}{\interne \plansemiologique} \newcommand{\plansemiologiqueexterne}{\externe \plansemiologique} \newcommand{\planmetasemiologiqueinterne}{\interne \planmetasemiologique} \newcommand{\planmetasemiologiqueexterne}{\externe \planmetasemiologique} \newcommand{\uniteextrinseque}{^\frown} \newcommand{\categorieextrinseque}[1]{)#1(} \newcommand{\glossematie}{\uniteextrinseque} \newcommand{\intrinseque}{^\asymp} \newcommand{\plerematie}{\gamma\glossematie} \newcommand{\plerematieintrinseque}{\gamma\intrinseque} \newcommand{\plerematiepour}{\exists} \newcommand{\manifestante}{\land} \newcommand{\manifestee}{\lor} \newcommand{\chaine}{^N} \newcommand{\chainecontenu}{\gamma^N} \newcommand{\chaineexpression}{g^N} \newcommand{\categorie}[1]{\{#1\}} \newcommand{\cat}{\categorie} \newcommand{\unite}{^{n}} \newcommand{\Unite}[1]{^{#1}} \newcommand{\unitede}[1]{{#1}^n} \newcommand{\unitedepour}[2]{{#1}^{#2}} \newcommand{\deg}{^{\circ}} \newcommand{\cata}{\{ \ou \alpha \}} \newcommand{\catA}{\{ \ou A\}} \newcommand{\catb}{\{ \ou \beta \}} \newcommand{\catB}{\{ \ou B \}} \newcommand{\catg}{\{ \ou \gamma \}} \newcommand{\catG}{\{ \ou \Gamma \}} \newcommand{\catbd}{\{ \ou \beta _{2} \}} \newcommand{\catBd}{\{ \ou B _{2} \}} \newcommand{\catgd}{\{ \ou \gamma _{2} \}} \newcommand{\catGd}{\{ \ou \Gamma _{2} \}} \newcommand{\catc}{\catg} \newcommand{\catcd}{\catgd} \newcommand{\catC}{\catG} \newcommand{\catCd}{\catGd} \newcommand{\solidarite}{\sim} \newcommand{\Solidarite}{\et \ou \beta} \newcommand{\combinaison}{-} \newcommand{\selection}{\rightarrow} \newcommand{\Selection}{\et \ou \gamma} \newcommand{\Combinaison}{\et \ou B} \newcommand{\selectionne}{\leftarrow} \newcommand{\selectionnant}{\rightarrow} \newcommand{\selectionnenant}{\rightleftarrows} \newcommand{\selectionneetnant}{\selectionne \selectionnant} \newcommand{\selectionneselectionnant}{\rightleftarrows} \newcommand{\interdependance}{\leftrightarrow} \newcommand{\Interdependance}{\varphi \ou \beta} \newcommand{\Constellation}{\varphi \ou B} \newcommand{\Determination}{\varphi \ou \gamma} \newcommand{\variete}{\solidarite \variante} \newcommand{\variation}{\combinaison \variante} \newcommand{\casea}{\ou a} \newcommand{\caseb}{\ou b} \newcommand{\casec}{\ou c} \newcommand{\caseab}{\ou ab} \newcommand{\caseac}{\ou ac} \newcommand{\casebc}{\ou bc} \newcommand{\caseabc}{\ou abc} \newcommand{\participanta}{\ou \alpha} \newcommand{\participantA}{\ou A} \newcommand{\participantb}{\ou \beta} \newcommand{\participantB}{\ou B} \newcommand{\participantg}{\ou \gamma} \newcommand{\participantG}{\ou \Gamma} \newcommand{\participantbd}{\ou \beta_2} \newcommand{\participantBd}{\ou B_2} \newcommand{\participantgd}{\ou \gamma_2} \newcommand{\participantGd}{{\ou \Gamma_2}} \newcommand{\participantbdeux}{\ou \beta_2} \newcommand{\participantBdeux}{\ou B_2} \newcommand{\participantgdeux}{\ou \gamma_2} \newcommand{\participantGdeux}{\ou \Gamma_2} \newcommand{\participantGb}{\ou \Gamma_{\beta}} \newcommand{\participantGB}{\ou \Gamma_{B}} \newcommand{\participantGg}{\ou \Gamma_{\gamma}} \newcommand{\zonea}{\ou (\alpha)} \newcommand{\zoneb}{\ou (\beta)} \newcommand{\zoneg}{\ou (\gamma)} \newcommand{\contraire}{a \ou b} \newcommand{\contradictoire}{ab \ou c} \newcommand{\correlationsimple}{a \ou b(c)} \newcommand{\unitecomplexe}{^{\gt_1}} \newcommand{\duplexe}{^2} \newcommand{\Duplexe}[1]{{#1}^2} \newcommand{\triplexe}{^3} \newcommand{\Triplexe}[1]{{#1}^3} \newcommand{\simplexe}{^1} \newcommand{\quadruplexe}{^4} \newcommand{\Quadruplexe}[1]{{#1}^4} \newcommand{\complementarite}{\unicode{9537}} \newcommand{\complementaritebis}{\unicode{620}} \newcommand{\autonomie}{\unicode{9536}} \newcommand{\etablissante}{\unicode{8634}} \newcommand{\etablie}{\unicode{8635}} \newcommand{\suspension}{^-} \newcommand{\superposition}{/} \newcommand{\defectiver}{\downarrow} \newcommand{\defectivee}{\uparrow} \newcommand{\dominante}{\in} \newcommand{\dominee}{\ni} \newcommand{\facultatif}[1]{(#1)} \newcommand{\latent}[1]{^{#1}} \newcommand{\actualisee}[1]{\{#1\}} \newcommand{\intensifa}{\participanta} \newcommand{\intensifb}{\participantb} \newcommand{\intensifg}{\participantg} \newcommand{\unite}{{}^n} \newcommand{\constante}{a} \newcommand{\variable}{x} \newcommand{\fonctif}{p} \newcommand{\specifiant}{\vdash} \newcommand{\specifie}{\dashv} \newcommand{\realisee}{X} \newcommand{\pre}{?} \newcommand{\conformite}{\Arrowvert} \newcommand{\cohesionparadigmatiquebis}{\moveright 1pt \infty \moveleft 4pt |} \newcommand{\cohesionparadigmatique}{ȸ} \newcommand{\cohesionsyntagmatique}{\moveright 6pt {\diagup \moveleft 4pt \diagup} \moveleft 6pt {\diagdown \moveleft 4pt \diagdown } } \newcommand{\catalysee}{\geq} \newcommand{\connectif}{_\star X} \newcommand{\indicateur}{\moveright 2pt {\lower 2pt \circ} \moveleft 5pt \nearrow} \newcommand{\signal}{\unicode{9808}} \newcommand{\categoriedeglossemes}{\categorie{_\star g}} \newcommand{\glosseme}{{_\star g}} \newcommand{\nexus}{_\star n} \newcommand{\nexuscontenu}{\nu} \newcommand{\nexusexpression}{n} \newcommand{\pseudonexus}{_\star n_0} \newcommand{\pseudonexuscontenu}{\nu_0} \newcommand{\pseudonexusexpression}{n_0} \newcommand{\syntagmatique}{\semiotique \et} \newcommand{\interjection}{\nu_0} \newcommand{\interne}{i} \newcommand{\externe}{x} \newcommand{\paradigmatique}{\semiotique \ou} \newcommand{\langue}{L \paradigmatique} \newcommand{\texte}{L \syntagmatique} \newcommand{\semiotiquedenotative}{\interne \semiotique} \newcommand{\semiotiqueconnotative}{\externe \semiotique} \newcommand{\semiologie}{_2 \semiotique} \newcommand{\semiologieinterne}{\interne_2 \semiotique} \newcommand{\semiologieexterne}{\externe_2 \semiotique} \newcommand{\metasemiologie}{_3 \semiotique} \newcommand{\metasemiologieinterne}{\interne_3 \semiotique} \newcommand{\metasemiologieexterne}{\externe_3 \semiotique} \newcommand{\plerematique}{\boldsymbol\Gamma} \newcommand{\cenematique}{\boldsymbol G} \newcommand{\paradigme}[1]{\lt #1 \gt} \newcommand{\op}{Op} \newcommand{\operation}{\op} \newcommand{\substitution}{\bsemi} \newcommand{\commutation}{;} \newcommand{\variante}{var.} \newcommand{\var}{var.} \newcommand{\variantede}[1]{\variante(#1)} \newcommand{\varietede}[1]{\variete(#1)} \newcommand{\presyntagmatique}{\pre\syntagmatique} \newcommand{\ligne}{^{\#}\odot} \newcommand{\lignecontenu}{\gamma\ligne} \newcommand{\ligneexpression}{g\ligne} \newcommand{\preligne}{\pre \ligne} \newcommand{\prelignecontenu}{\pre \lignecontenu} \newcommand{\preligneexpression}{\pre \ligneexpression} \newcommand{\cote}{_{\#}\odot} \newcommand{\cotecontenu}{\gamma\cote} \newcommand{\coteexpression}{g\cote} \newcommand{\pleremateme}{\gamma} \newcommand{\cenemateme}{g} \newcommand{\denotatif}{\externe \cenemateme} \newcommand{\connotatif}{\externe \pleremateme} \newcommand{\determinant}{\ggg \moveleft 3pt \rightarrow} \newcommand{\determine}{ \leftarrow \moveleft 3pt \lll} \newcommand{\interdependant}{\leftrightarrow} \newcommand{\constellatif}{\arrowvert} \newcommand{\constellation}{\arrowvert} \newcommand{\element}{_\star l} \newcommand{\elements}{_\star ll} \newcommand{\elementcontenu}{\lambda} \newcommand{\elementscontenu}{\lambda \lambda} \newcommand{\elementexpression}{l} \newcommand{\elementsexpression}{ll} \newcommand{\nexie}{_\star nII} \newcommand{\nexiecontenu}{\nu II} \newcommand{\nexieexpression}{nII} \newcommand{\pseudonexie}{_\star nII_0} \newcommand{\pseudonexiecontenu}{\nu II_0} \newcommand{\pseudonexieexpression}{nII_0} \newcommand{\syntagmatie}{S} \newcommand{\syntagmatiecontenu}{\Sigma} \newcommand{\reduction}{\equiv} \newcommand{\transposition}{\underline{ \eqsim}} \newcommand{\taxeme}{_\star G} \newcommand{\connotateur}{x \Gamma} \newcommand{\continuer}{\lt} \newcommand{\continue}{\gt} \newcommand{\sommemaximale}{\odot} \newcommand{\taxemedirectif}{_\star D} \newcommand{\directif}{_\star D} \newcommand{\taxemeconstitutif}{_\star M_{\prime}} \newcommand{\constitutif}{_\star M_{\prime}} \newcommand{\taxemeflexif}{_\star P_{\prime}} \newcommand{\flexif}{_\star P_{\prime}} \newcommand{\flexifsimple}{_\star P} \newcommand{\thematif}{_\star P_t} \newcommand{\categoriedetaxemes}{\categorie{\taxeme}} \newcommand{\categorietaxemes}{\categoriedetaxemes} \newcommand{\taxemefondamental}{_\star P_\curvearrowright} \newcommand{\taxemeconverti}{_\star P_\curvearrowleft} \newcommand{\taxemesemifondamental}{_\star P_{\curvearrowleft\curvearrowright}} \newcommand{\taxemeambifondamental}{_\star P_{\curvearrowright\curvearrowleft}} \newcommand{\varietefondamentale}{_\star P_{\curvearrowright\curvearrowleft\curvearrowright}} \newcommand{\varietesemifondamentale}{_\star P_{\curvearrowright\curvearrowleft\curvearrowleft\curvearrowright}} \newcommand{\varieteconvertie}{_\star P_{\curvearrowright\curvearrowleft\curvearrowleft}} \newcommand{\varietedirection}{_\star P_d} \newcommand{\varietededirectionthematif}{_\star P_d} \newcommand{\varieteflexion}{_\star P_\tau} \newcommand{\varietedeflexionthematif}{_\star P_\tau} \newcommand{\thematifthematise}{_\star P_\vartheta} \newcommand{\unitehomogene}{{}^{\unicode{5777} /}} \newcommand{\succession}{\unitehomogene} \newcommand{\categoriehomogene}{{}_{\unicode{450}/}} \newcommand{\unitehomosousgenerique}{{}^{\unicode{5777}}} \newcommand{\categoriehomosousgenerique}{{}_{\unicode{5777}}} \newcommand{\ensemble}{\unitehomosousgenerique} \newcommand{\taxememedian}{_\star G_i} \newcommand{\taxemeperipherique}{_\star G_p} \newcommand{\taxemesemimedian}{_\star G_{pi}} \newcommand{\taxemeambimedian}{_\star G_{ip}} \newcommand{\varietemediane}{_\star G_{ipi}} \newcommand{\varietesemimediane}{_\star G_{ippi}} \newcommand{\varieteperipherique}{_\star G_{ipp}} \newcommand{\taxemecentral}{_\star G_c} \newcommand{\taxememarginal}{_\star G_m} \newcommand{\taxemesemicentral}{_\star G_{mc}} \newcommand{\taxemeambicentral}{_\star G_{cm}} \newcommand{\glossememedian}{_\star g_i} \newcommand{\glossemeperipherique}{_\star g_p} \newcommand{\glossemesemimedian}{_\star g_{pi}} \newcommand{\glossemeambimedian}{_\star g_{ip}} \newcommand{\gvarietemediane}{_\star g_{ipi}} \newcommand{\gvarietesemimediane}{_\star g_{ippi}} \newcommand{\gvarieteperipherique}{_\star g_{ipp}} \newcommand{\glossemecentral}{_\star g_c} \newcommand{\glossememarginal}{_\star g_m} \newcommand{\glossemesemicentral}{_\star g_{mc}} \newcommand{\glossemeambicentral}{_\star g_{cm}} \newcommand{\glossemepremier}{_\star g \prime} \newcommand{\varietecentrale}{_\star G_{cmc}} \newcommand{\varietesemicentrale}{_\star G_{cmmc}} \newcommand{\varietemarginale}{_\star G_{cmm}} \newcommand{\glossemedirectif}{_\star d} \newcommand{\gdirectif}{_\star d} \newcommand{\glossemeconstitutif}{_\star m_{\prime}} \newcommand{\gconstitutif}{_\star m_{\prime}} \newcommand{\glossemeflexif}{_\star p_{\prime}} \newcommand{\gflexif}{_\star p_{\prime}} \newcommand{\glossemethematif}{_\star p_{t}} \newcommand{\gthematif}{_\star p_{t}} \newcommand{\exposantfondamental}{_\star p^\curvearrowright} \newcommand{\exposantconverti}{_\star p^\curvearrowleft} \newcommand{\exposantsemifondamental}{_\star p^{\curvearrowleft\curvearrowright}} \newcommand{\exposantambifondamental}{_\star p^{\curvearrowright\curvearrowleft}} \newcommand{\gvarietesemifondamentale}{_\star p^{\curvearrowright\curvearrowleft\curvearrowleft\curvearrowright}} \newcommand{\gvarietefondamentale}{_\star p^{\curvearrowright\curvearrowleft\curvearrowright}} \newcommand{\gvarieteconvertie}{_\star p^{\curvearrowright\curvearrowleft\curvearrowleft}} \newcommand{\gthematie}{_\star p} \newcommand{\thematie}{_\star p} \newcommand{\gcaractere}{_\star q} \newcommand{\gvarietecentrale}{_\star g_{cmc}} \newcommand{\gvarietesemicentrale}{_\star g_{cmmc}} \newcommand{\gvarietemarginale}{_\star g_{cmm}} \newcommand{\symphtongue}{_\star f} \newcommand{\autophtongue}{_\star r} \newcommand{\autopleremateme}{\rho} \newcommand{\sympleremateme}{\phi} \newcommand{\autocenemateme}{r} \newcommand{\syncenemateme}{f} \newcommand{\constitutifsimple}{_\star M} \newcommand{\constituant}{_\star m} \newcommand{\exposant}{_\star p} \newcommand{\formatif}{\Pi_{\prime}} \newcommand{\formatifsimple}{\Pi} \newcommand{\prosodie}{P_{\prime}} \newcommand{\prosodiesimple}{P} \newcommand{\morphemeintense}{\pi_{n}} \newcommand{\morphemeextense}{\pi_{\nu}} \newcommand{\prosodemeintense}{p_{n}} \newcommand{\prosodemeextense}{p_{\nu}} \newcommand{\morphemedirectif}{\delta} \newcommand{\pleremeconstitutif}{\mu_{\prime}} \newcommand{\morphemeflexif}{\pi_{\prime}} \newcommand{\plerematemethematif}{\pi_{t}} \newcommand{\plereme}{\mu} \newcommand{\morpheme}{\pi} \newcommand{\prosodemedirectif}{d} \newcommand{\cenemeconstitutif}{m_{\prime}} \newcommand{\prosodemeflexif}{p_{\prime}} \newcommand{\cenematemethematif}{p_{t}} \newcommand{\ceneme}{m} \newcommand{\prosodeme}{p} \newcommand{\catalysepar}{\ge} \newcommand{\implique}{\subset} \newcommand{\impliquepar}{\supset} \newcommand{\caractere}{_\nu} \newcommand{\caractereintense}{_\star C_n} \newcommand{\caractereextense}{_\star C_\nu} \newcommand{\derivatif}{\Phi} \newcommand{\radical}{P} \newcommand{\caracterenominal}{K_n} \newcommand{\caractereverbal}{K_\nu} \newcommand{\consonne}{F} \newcommand{\voyelle}{R} \newcommand{\accent}{C_n} \newcommand{\modulation}{C_\nu} \newcommand{\taxemeprimaire}{_\star G_1} \newcommand{\taxemesecondaire}{_\star G_2} \newcommand{\taxemesemiprimaire}{_\star G_{21}} \newcommand{\taxemeambiprimaire}{_\star G_{12}} \newcommand{\varieteprimaire}{_\star G_{121}} \newcommand{\varietesemiprimaire}{_\star G_{1221}} \newcommand{\varietesecondaire}{_\star G_{122}} \newcommand{\taxemeprincipal}{_\star G_I} \newcommand{\taxemeaccessoire}{_\star G_{II}} \newcommand{\taxemesemiprincipal}{_\star G_{s}} \newcommand{\taxemeambiprincipal}{_\star G_{a}} \newcommand{\varieteprincipale}{_\star G_{aI}} \newcommand{\varietesemiprincipale}{_\star G_{as}} \newcommand{\varieteaccessoire}{_\star G_{aII}} \newcommand{\glossemeprimaire}{_\star g_1} \newcommand{\glossemesecondaire}{_\star g_2} \newcommand{\glossemesemiprimaire}{_\star g_{21}} \newcommand{\glossemeambiprimaire}{_\star g_{12}} \newcommand{\gvarieteprimaire}{_\star g_{121}} \newcommand{\gvarietesemiprimaire}{_\star g_{1221}} \newcommand{\gvarietesecondaire}{_\star g_{122}} \newcommand{\glossemeprincipal}{_\star g_I} \newcommand{\glossemeaccessoire}{_\star g_{II}} \newcommand{\glossemesemiprincipal}{_\star g_{s}} \newcommand{\glossemeambiprincipal}{_\star g_{a}} \newcommand{\gvarieteprincipale}{_\star g_{aI}} \newcommand{\gvarietesemiprincipale}{_\star g_{as}} \newcommand{\gvarieteaccessoire}{_\star g_{aII}} \newcommand{\unitemonoplane}{^{\glosseme}} \newcommand{\monoplan}{\unitemonoplane} \newcommand{\signe}{^{\gamma g}} \newcommand{\uniteintrinseque}{\smile} \newcommand{\unitenonintrinseque}{\frown} \newcommand{\glossematieintrinseque}{\asymp} \newcommand{\categorieintrinseque}[1]{>#1<} \newcommand{\glossie}[1]{)#1(} \newcommand{\cenematieintrinseque}{g^\glossematieintrinseque} \newcommand{\cenematienonintrinseque}{g^\unitenonintrinseque} \newcommand{\uniteheterogene}[1]{#1^\#} \newcommand{\categorieheterogene}[1]{#1_\#} \newcommand{\categorieheterosousgenerique}[1]{#1_{\#\prime}} \newcommand{\uniteheterotypique}{^{\#\prime}} \newcommand{\categorieheterotypique}[1]{#1_{\#\prime}} \newcommand{\uniteheterosousgenerique}{\syntagme} \newcommand{\syntagme}{_\star s} \newcommand{\syntagmecontenu}{\sigma} \newcommand{\syntagmeexpression}{s} \newcommand{\textdoublebarpipe}{\unicode{450}} \newcommand{\unitehomotypique}{^{\times\prime}} \newcommand{\categoriehomotypique}[1]{#1_{\times\prime}} \newcommand{\uniteheterosoustypique}{^\textdoublebarpipe} \newcommand{\categorieheterosoustypique}[1]{#1_\textdoublebarpipe} \newcommand{\unitehomosoustypique}{^\times} \newcommand{\categoriehomosoustypique}[1]{#1_\times} \newcommand{\suite}{\uniteheterosoustypique} \newcommand{\groupe}{\unitehomosoustypique} \newcommand{\uniteheterotagmatique}{^{\neq}} \newcommand{\categorieheterotagmatique}[1]{#1_{\neq}} \newcommand{\unitehomotagmatique}{^{=}} \newcommand{\categoriehomotagmatique}[1]{#1_{=}} \newcommand{\uniteheterosoustagmatique}{^\textdoublebarpipe} \newcommand{\categorieheterosoustagmatique}[1]{#1_\textdoublebarpipe} \newcommand{\conglomerat}{\uniteheterotagmatique} \newcommand{\coomplexe}{\unitehomotagmatique} \newcommand{\uniteheterosoustagmatique}{^{\neq\prime}} \newcommand{\categorieheterosoustagmatique}[1]{#1_{\neq\prime}} \newcommand{\unitehomosoustagmatique}{^{= \prime}} \newcommand{\categoriehomosoustagmatique}[1]{#1_{= \prime}} \newcommand{\uniteheterosoustagmatique}{^\textdoublebarpipe} \newcommand{\categorieheterosoustagmatique}[1]{#1_\textdoublebarpipe} \newcommand{\uniteminimale}{^{(n)}} \newcommand{\uniteminimalede}[1]{^{(#1)}} \newcommand{\Uniteminimale}[1]{{#1}^{(n)}} \newcommand{\uniteidentite}{^{\substitution}} \newcommand{\unitedifferentielle}{^{???}} \newcommand{\Unitedifferentielle}[1]{{#1}^{???}} \newcommand{\expressionpour}{E} \newcommand{\permutation}{!} \newcommand{\mot}{^{(\gamma g \permutation)}} \newcommand{\racine}{\sqrt{}} \newcommand{\affixe}{a} \newcommand{\steme}{t} \newcommand{\formant}{fm} \newcommand{\alternative}{:} \newcommand{\taxie}{\Unite{\taxeme}} \newcommand{\intense}{_n} \newcommand{\extense}{_\nu} \newcommand{\caracteristique}{_\star q^S} \newcommand{\caracteristiquecontenu}{۹^S} \newcommand{\caracteristiqueexpression}{q^S} \newcommand{\caracteristiqueintense}{\caracteristique \intense} \newcommand{\caracteristiqueintensecontenu}{\caracteristiquecontenu \intense} \newcommand{\caracteristiqueintenseexpression}{\caracteristiqueexpression \intense} \newcommand{\caracteristiqueextense}{\caracteristique \extense} \newcommand{\caracteristiqueextenseexpression}{\caracteristiqueexpression \extense} \newcommand{\caracteristiquenominale}{۹^S \intense} \newcommand{\caracteristiqueverbale}{۹^S \extense} \newcommand{\pseudocaracteristique}{_\star q_0} \newcommand{\pseudocaracteristiquecontenu}{۹_0} \newcommand{\pseudocaracteristiqueexpression}{q_0} \newcommand{\theme}{_\star \unicode{421}^S} \newcommand{\themecontenu}{ϑ^S} \newcommand{\themeexpression}{\unicode{421}^S} \newcommand{\themeintense}{\theme \intense} \newcommand{\themeintenseexpression}{\themeexpression \intense} \newcommand{\themeextense}{\theme \extense} \newcommand{\themeextensecontenu}{\themecontenu \extense} \newcommand{\themeextenseexpression}{\themeexpression \extense} \newcommand{\themenominal}{ϑ^S \intense} \newcommand{\themesyllabique}{\unicode{421}^S_n} \newcommand{\pseudotheme}{_\star \unicode{421}_0} \newcommand{\pseudothemecontenu}{ϑ_0} \newcommand{\pseudothemeexpression}{\unicode{421}_0} \newcommand{\pseudosyllabe}{\unicode{421}_0} \newcommand{\relatif}{\syntagmateme X} \newcommand{\verbe}{\conjonction(\nexus)} \newcommand{\compositum}{\syntagme^S} \newcommand{\juxtaposition}{\syntagme^\unicode{421}} \newcommand{\conjonction}{_\star \unicode{421}_0X} \newcommand{\conjonctioncontenu}{ϑ_0X} \newcommand{\opGg}{\boldsymbol{_\star Gg}} \newcommand{\opg}{\boldsymbol{_\star g}} \newcommand{\opgI}{\boldsymbol{_\star gI}} \newcommand{\opgII}{\boldsymbol{_\star gII}} \newcommand{\opgIII}{\boldsymbol{_\star gIII}} \newcommand{\opgIV}{\boldsymbol{_\star gIV}} \newcommand{\sopg}[1]{\boldsymbol{_\star g #1}} \newcommand{\opn}{\boldsymbol{_\star n}} \newcommand{\ops}{\boldsymbol{_\star s}} \newcommand{\opG}{\boldsymbol{_\star G}} \newcommand{\opGIII}{\boldsymbol{_\star GIII}} \newcommand{\sopG}[1]{\boldsymbol{_\star G #1}} \newcommand{\opt}{\boldsymbol{_\star t}} \newcommand{\operatoire}[1]{/#1/} \newcommand{\syntagmateme}{_\star z} \newcommand{\syntagmatemecontenu}{\zeta} \newcommand{\syntagmatemeexpression}{z} \newcommand{\syllabe}{z} \newcommand{\nom}{\zeta} \newcommand{\jonction}{\syntagmatie \unitecomplexe} \newcommand{\jonctioncontenu}{\syntagmatiecontenu \unitecomplexe} \newcommand{\jonctionexpression}{\syntagmatieexpression \unitecomplexe} \newcommand{\espece}{_{ᚑ \prime } \odot} \newcommand{\sousespece}{_ᚑ \odot} \newcommand{\type}{_{\times \prime} \odot} \newcommand{\soustype}{_{\times} \odot} \newcommand{\tagma}{_{=} \odot} \newcommand{\soustagma}{_{= \prime} \odot} \newcommand{\sommeminimale}{I} \newcommand{\Ufonction}{\fonction} \newcommand{\Ufonctif}{F} \newcommand{\Uchaine}{\Ufonctif^N} \newcommand{\Uunite}{\Ufonctif^n} \newcommand{\Uidentique}{\equiv} \newcommand{\Uparadigme}[1]{\lt #1 \gt} \newcommand{\Usomme}[1]{\Uparadigme{#1}^+} \newcommand{\Ucategorie}[1]{\categorie{#1}} \newcommand{\Ucategorieexhaustive}[1]{\categorie{#1}^+} \newcommand{\Uderivation}{\lhd} \newcommand{\UDerivation}{\rhd} \newcommand{\avoir}{???} $
Accueil Contact

Définitions entrant dans plusieurs oppositions

Sont données ici les définitions qui entrent dans plusieurs oppositions (d'après l'état des analyses données dans l'édition papier de Whitfield).
Nombre de définitions entrant dans plusieurs oppositions : 87.

Definiendum Definiens
réciprocité, réciproque IX Réciprocité est utilisé comme terme commun pour interdépendance et constellation. Des fonctifs qui contractent une réciprocité mutuelle sont appelés réciproques.
détermination 16 Une détermination est une fonction entre une constante et une variable.
sélection 27 Une sélection est une relation entre une constante et une variable.
métasémiotique 43  Une métasémiotique est une sémiotique scientifique dont un ou plusieurs plan(s) est (sont) une (des) sémiotique(s).
sémiotique connotative 44 Une sémiotique connotative (symbole : $\semiotiqueconnotative$) est une sémiotique non scientifique dont un ou plusieurs plan(s) est (sont) une (des) sémiotique(s).
commutation 54 Une commutation (symbole : $\commutation$) est une mutation entre les composantes4 d'un paradigme.
4Plus précisément les membres (Déf 138).
solidarité 58 Une solidarité est une relation entre deux constantes. Quand il n'y a que deux et seulement deux constantes qui contractent la solidarité, la solidarité peut être appelée une connexion bilatérale.
combinaison 59 Une combinaison est une relation entre deux variables.
solidaire 61 Des relats solidaires (symboles : $\solidarite$) sont des relats qui contractent une solidarité.
combiné 62 Des relats combinés (symbole : $\combinaison$ ) sont des relats qui contractent une combinaison.
complémentarité, corrélation bilatérale 93 Une complémentarité est une corrélation entre deux constantes. Si les constantes qui contractent la complémentarité sont au nombre de deux et de seulement deux, la complémentarité peut être appelée une corrélation bilatérale.
autonomie 94 Une autonomie est une corrélation entre deux variables.
complémentaires 95 Des corrélats complémentaires (symbole : $\complementarite$) sont des corrélats qui contractent une complémentarité.
autonomes 96 Des corrélats autonomes (symbole : $\autonomie$) sont des corrélats qui contractent une autonomie.
interdépendance 125 Une interdépendance est une fonction entre deux constantes.
constellation 126 Une constellation est une fonction entre deux variables.
constellatifs 130 Les constellatifs (symbole : $\constellatif$ ) sont des fonctifs qui contractent une constellation.
sélectionnant 131 Un relat sélectionnant (symbole : $\selectionnant$) est la variable dans une sélection.
sélectionné 132 Un relat sélectionné (symbole : $\selectionne$) est la constante dans une sélection.
spécification 135 Une spécification est une corrélation entre une constante et une variable.
spécifiant 136 Un corrélat spécifiant (symbole : $\specifiant$) est une variable dans une spécification.
spécifié 137 Un corrélat spécifié (symbole : $\specifie$) est la constante dans une spécification.
cohésion, cohésif 148 Cohésion est un terme commun pour interdépendance et détermination. Des fonctifs qui contractent une cohésion mutuelle sont dits cohésifs. Pour une cohésion paradigmatique on utilise le symbole $\cohesionparadigmatique$, pour une cohésion syntagmatique, le symbole .
plérématie, contenu 180 Une plérématie ou contenu (symboles : $\plerematie$, $\plerematieintrinseque$) est une glossématie plérématique. Une plérématie non intrinsèque (cf. Déf 371) est symbolisée par $\plerematie$ ; une plérématie intrinsèque est symbolisée par $\plerematieintrinseque$. La plérématie est dite plérématie pour ou contenu pour (symbole : $\plerematiepour$) la cénématie (Déf 374) ou la cénie (Déf 375) avec laquelle elle a une relation.
ligne 189 Une ligne (symbole : $\ligne$) est une partie d'une syntagmatique.
fonctif cénématique, fonctif d'expression 214 Un fonctif cénématique, ou fonctif d'expression, est un fonctif qui entre dans un plan d'expression.
dérivatif 251 Un dérivatif (symbole : $\derivatif$) est une thématie centrifuge plérématique.
radical 252 Un radical (symbole : $\radical$) est une thématie centripète plérématique.
caractère nominal 253 Un caractère nominal (symbole : $\caracterenominal$) est un caractère intense plérématique.
caractère verbal 254 Un caractère verbal (symbole : $\caractereverbal$) est un caractère extense plérématique.
consonne 255 Une consonne (symbole : $\consonne$) est une thématie centrifuge cénématique.
voyelle 256 Une voyelle (symbole : $\voyelle$) est une thématie centripète cénématique.
accent 257 Un accent (symbole : $\accent$) est un caractère intense cénématique.

modulation 258 Une modulation (symbole : $\modulation$) est un caractère extense cénématique.
côté 270 Un côté (symbole : $\cote$) est un membre dans une paradigmatique.
morphème directif 289 Un morphème directif (symbole : $\morphemedirectif$) est un glossème directif plérématique.
plérème constitutif 290 Un plérème constitutif (symbole : $\pleremeconstitutif$) est un glossème constitutif  plérématique.
morphème flexif 291 Un morphème flexif (symbole : $\morphemeflexif$) est un glossème flexif plérématique.
plérématème thématif 292 Un plérématème thématif (symbole : $\plerematemethematif$) est un glossème thématif plérématique.
plérème 293 Un plérème (symbole : $\plereme$) est un constituant plérématique.
0 morphème 294 Un morphème (symbole : $\morpheme$) est un exposant plérématique.
prosodème directif 295 Un prosodème directif )sqmbole : $\prosodemedirectif$) est un glossème directif cénématique.
cénème constitutif 296 Un cénéme constitutif (symbole : $\cenemeconstitutif$) est un glossème constitutif cénématique.
prosodème flexif 297 Un prosodème flexif (symbole : $\prosodemeflexif$) est un glossème flexif cénématique.
cénématème thématif 298 Un cénématème thématif (symbole : $\cenematemethematif$) est un glossème thématif cénématique.
cénème 299 Un cénème (symbole : $\ceneme$) est un constituant cénématique.
prosodème 300 Un prosodème (symbole : $\prosodeme$) est un exposant cénématique.
exposant fondamental 303 Un exposant fondamental (symbole : $\exposantfondamental$) est un exposant qui entre dans un taxème fondamental.
exposant converti 304 Un exposant converti (symbole : $\exposantconverti$) est un exposant qui entre dans un taxème converti.
exposant semi-fondamental 305  Un exposant semi-fondamental (symbole : $\exposantsemifondamental$) est un exposant qui entre dans un taxème semi-fondamental.
exposant ambifondamental 306 Un exposant ambifondamental (symbole : $\exposantambifondamental$) est un exposant qui entre dans un taxème ambifondamental.
thématie 307 Les thématies sont les sous-espèces simples incluant les taxèmes et/ou les variétés de taxèmes convertis et/ou les constitutifs simples (ce terme a été introduit de manière opératoire avant, in Règ 145).
caractère 308 Les caractères sont les sous-espèces simples incluant les taxèmes et/ou les variétés de taxèmes fondamentaux et/ou les taxèmes et/ou les variétés de taxèmes semi-fondamentaux. (Ce terme a été introduit de manière opératoire avant, in Règ 145).
glossème thématie 309 Un glossème thématie ou une variété de glossème thématie (symbole : $\gthematie$) est un glossème ou une variété de glossème qui entre dans une thématie.
glossème caractère, variété de glossème caractère 310  Un glossème caractère ou une variété de glossème caractère (symbole : $\gcaractere$) est un glossème ou une variété de glossème qui entre dans un caractère.
système général 311  Un système général est un système qui n'est pas une variété d'un système dans la même sémiotique.
schéma 312 Les schémas sont les variétés de systèmes au sein d'une seule et même sémiotique.
schéma spécial 313 Un schéma spécial est un schéma qui a une solidarité avec des schémas de différentes sous-espèces simples.
schéma total 314 Un schéma total est un schéma qui est solidaire avec des schémas de mêmes sous-espèces simples.
glossème médian 317 Un glossème médian (symbole : $\glossememedian$) un est glossème qui entre dans un taxème médian.
glossème périphérique 318 Un glossème périphérique (symbole : $\glossemeperipherique$) est un glossème qui entre dans un taxème périphérique.
glossème semi-médian 319 Un glossème semi-médian (symbole : $\glossemesemimedian$) est un glossème qui entre dans un taxème semi-médian.
glossème ambimédian 320 Un glossème ambimédian (symbole : $\glossemeambimedian$) est un glossème qui entre dans un taxème ambimédian.
taxème périphérique simple, variété de taxème périphétrique simple 321 Les taxèmes périphériques simples et les variétés de taxèmes périphériques simples sont un type simple incluant des taxèmes périphériques et/ou les variétés de taxèmes périphériques. (Ce terme a déjà été introduit de manière opératoire dans la Règ. 146).
taxème médian simple, variété de taxème médian simple 322 Des taxèmes médians simples ou des variétés de taxèmes médians simples sont un type simple incluant des taxèmes médians et/ou des taxèmes semi-médians et/ou des variétés de taxèmes médianes et/ou des variétés de taxèmes semi-médians. (Ce terme a déjà été introduit de manière opératoire dans Règ 146).
glossème périphérique simple, variété de glossème périphérique simple 323 Un glossème périphérique simple ou une variété de glossème périphérique simple est un glossème ou une variété de glossème qui entre dans un taxème périphérique simple ou, respectivement, dans une variété de taxème périphérique simple.
glossème médian simple, variété de glossème médian simple 324 Un glossème médian simple ou une variété de glossème médian simple est un glossème ou une variété de glossème qui entre dans un taxème médian simple ou, respectivement, dans une variété de taxème médian simple.
autoplérématème 339 Un autoplérématème (symbole : $\autopleremateme$) est un autophtongue plérématique.
symplérématème 340 Un symplérématème (symbole : $\sympleremateme$) est un symphtongue plérématique.
autocénématème 341 Un autocénématème (symbole : $\autocenemateme$) est un autophtongue cénématique.
syncénématème 342 Un syncénématème (symbole : $\syncenemateme$) est un symphtongue cénématique.
morphème intense 343 Un morphème intense (symbole : $\morphemeintense$) est un morphème qui entre dans un caractère nominal.
morphème extense 344 Un morphème extense (symbole : $\morphemeextense$) est un morphème qui entre dans un caractère nominal.
prosodème intense 345 Un prosodème intense (symbole : $\prosodemeintense$) est un prosodème qui entre dans un accent.
prosodème extense 346 Un prosodème extense (symbole : $\prosodemeextense$) est un prosodème qui entre dans une modulation.
plérie 373 Une plérie est une glossie plérématique.
cénématie ou expression 374 Une cénématie ou expression (symboles : $\cenematienonintrinseque$, $\cenematieintrinseque$) est une glossématie cénématique.
Uje cënөmatie non intrinsèque (Déf 371) est symbolisée par $\cenematienonintrinseque$ ; une cénématie intrinsèque est symbolisée par $\cenematieintrinseque$. La cénématie est dite être une cénématie ou une expression pour (symbole : $expressionpour$) la plérématie ou les pléries auxquelles elle a une relation.
cénie 375 Une cénie est une glossie cénématique.
somme hétérosoustypique 383 Une somme hétérosoustypique (symboles : unité hétérosoustypique (voir suite) $\uniteheterosoustypique$, catégorie hétérosoustypique $\categorieheterosoustypique{}$) est une somme dans laquelle entrent des taxèmes des deux sous-types simples d'un seul et même type simple.
somme homosoustypique 385 Une somme homosoustypique (symboles : unité homosoustypique (voir groupe) $\unitehomosoustypique$, catégorie homosoustypique $\categoriehomosoustypique{}$) est une somme dans laquelle entre des taxèmes d'un seul et même sous-type simple d'un seul et même type simple.
plus grande somme 395 Une plus grande somme est une somme d'extension ou de taille la plus grande possible.
permutation 400 Une permutation (symbole : $\permutation$) est une mutation entre les parties d'une chaîne.
formant 406 Un formant (symbole : $\formant$) est une cénématie pour une unité caractère plérématique.
nexus 419 Un nexus (symbole : $\nexus$) est un syntagme minimal dans lequel entre une suite de caractères.
syntagmatème 420 Un syntagmatème (symbole : $\syntagmateme$) est un syntagme minimal dans lequel n'entre aucune suite de caractères.
nexie 425 Une nexie (asymbole : $\nexie$) est un syntagme non minimal dans lequel entre une suite de caractères.
syntagmatie 426 Une syntagmatie (symbole : $\syntagmatie$) est un syntagme non minimal dans lequel n'entre pas de suite de caractères.