$ \newcommand{\classe}{\square} \newcommand{\hierarchie}{\square \raise 3pt{\moveleft 3pt \square}} \DeclareMathOperator{\ou}{\vdots} \DeclareMathOperator{\correlation}{\ou} \newcommand{\analyse}{\space :: \space} \newcommand{\relation}{{\rm R}} \DeclareMathOperator{\et}{R} \newcommand{\fonction}{\varphi} \newcommand{\inclut}{\rhd} \newcommand{\entre}{\lhd} \newcommand{\mutation}{¡} \newcommand{\semiotique}{\gamma \deg g \deg} \newcommand{\plan}{_\star g\deg} \newcommand{\plancontenu}{\gamma \deg} \newcommand{\planexpression}{g \deg} \newcommand{\planinterne}{\interne \plan} \newcommand{\planexterne}{\externe \plan} \newcommand{\plandenotatif}{\externe \planexpression} \newcommand{\planconnotatif}{\externe \plancontenu} \newcommand{\plansemiologique}{_{2\star} g \deg} \newcommand{\planmetasemiologique}{_{3\star} g \deg} \newcommand{\plansemiologiqueinterne}{\interne \plansemiologique} \newcommand{\plansemiologiqueexterne}{\externe \plansemiologique} \newcommand{\planmetasemiologiqueinterne}{\interne \planmetasemiologique} \newcommand{\planmetasemiologiqueexterne}{\externe \planmetasemiologique} \newcommand{\uniteextrinseque}{^\frown} \newcommand{\categorieextrinseque}[1]{)#1(} \newcommand{\glossematie}{\uniteextrinseque} \newcommand{\intrinseque}{^\asymp} \newcommand{\plerematie}{\gamma\glossematie} \newcommand{\plerematieintrinseque}{\gamma\intrinseque} \newcommand{\plerematiepour}{\exists} \newcommand{\manifestante}{\land} \newcommand{\manifestee}{\lor} \newcommand{\chaine}{^N} \newcommand{\chainecontenu}{\gamma^N} \newcommand{\chaineexpression}{g^N} \newcommand{\categorie}[1]{\{#1\}} \newcommand{\cat}{\categorie} \newcommand{\unite}{^{n}} \newcommand{\Unite}[1]{^{#1}} \newcommand{\unitede}[1]{{#1}^n} \newcommand{\unitedepour}[2]{{#1}^{#2}} \newcommand{\deg}{^{\circ}} \newcommand{\cata}{\{ \ou \alpha \}} \newcommand{\catA}{\{ \ou A\}} \newcommand{\catb}{\{ \ou \beta \}} \newcommand{\catB}{\{ \ou B \}} \newcommand{\catg}{\{ \ou \gamma \}} \newcommand{\catG}{\{ \ou \Gamma \}} \newcommand{\catbd}{\{ \ou \beta _{2} \}} \newcommand{\catBd}{\{ \ou B _{2} \}} \newcommand{\catgd}{\{ \ou \gamma _{2} \}} \newcommand{\catGd}{\{ \ou \Gamma _{2} \}} \newcommand{\catc}{\catg} \newcommand{\catcd}{\catgd} \newcommand{\catC}{\catG} \newcommand{\catCd}{\catGd} \newcommand{\solidarite}{\sim} \newcommand{\Solidarite}{\et \ou \beta} \newcommand{\combinaison}{-} \newcommand{\selection}{\rightarrow} \newcommand{\Selection}{\et \ou \gamma} \newcommand{\Combinaison}{\et \ou B} \newcommand{\selectionne}{\leftarrow} \newcommand{\selectionnant}{\rightarrow} \newcommand{\selectionnenant}{\rightleftarrows} \newcommand{\selectionneetnant}{\selectionne \selectionnant} \newcommand{\selectionneselectionnant}{\rightleftarrows} \newcommand{\interdependance}{\leftrightarrow} \newcommand{\Interdependance}{\varphi \ou \beta} \newcommand{\Constellation}{\varphi \ou B} \newcommand{\Determination}{\varphi \ou \gamma} \newcommand{\variete}{\solidarite \variante} \newcommand{\variation}{\combinaison \variante} \newcommand{\casea}{\ou a} \newcommand{\caseb}{\ou b} \newcommand{\casec}{\ou c} \newcommand{\caseab}{\ou ab} \newcommand{\caseac}{\ou ac} \newcommand{\casebc}{\ou bc} \newcommand{\caseabc}{\ou abc} \newcommand{\participanta}{\ou \alpha} \newcommand{\participantA}{\ou A} \newcommand{\participantb}{\ou \beta} \newcommand{\participantB}{\ou B} \newcommand{\participantg}{\ou \gamma} \newcommand{\participantG}{\ou \Gamma} \newcommand{\participantbd}{\ou \beta_2} \newcommand{\participantBd}{\ou B_2} \newcommand{\participantgd}{\ou \gamma_2} \newcommand{\participantGd}{{\ou \Gamma_2}} \newcommand{\participantbdeux}{\ou \beta_2} \newcommand{\participantBdeux}{\ou B_2} \newcommand{\participantgdeux}{\ou \gamma_2} \newcommand{\participantGdeux}{\ou \Gamma_2} \newcommand{\participantGb}{\ou \Gamma_{\beta}} \newcommand{\participantGB}{\ou \Gamma_{B}} \newcommand{\participantGg}{\ou \Gamma_{\gamma}} \newcommand{\zonea}{\ou (\alpha)} \newcommand{\zoneb}{\ou (\beta)} \newcommand{\zoneg}{\ou (\gamma)} \newcommand{\contraire}{a \ou b} \newcommand{\contradictoire}{ab \ou c} \newcommand{\correlationsimple}{a \ou b(c)} \newcommand{\unitecomplexe}{^{\gt_1}} \newcommand{\duplexe}{^2} \newcommand{\Duplexe}[1]{{#1}^2} \newcommand{\triplexe}{^3} \newcommand{\Triplexe}[1]{{#1}^3} \newcommand{\simplexe}{^1} \newcommand{\quadruplexe}{^4} \newcommand{\Quadruplexe}[1]{{#1}^4} \newcommand{\complementarite}{\unicode{9537}} \newcommand{\complementaritebis}{\unicode{620}} \newcommand{\autonomie}{\unicode{9536}} \newcommand{\etablissante}{\unicode{8634}} \newcommand{\etablie}{\unicode{8635}} \newcommand{\suspension}{^-} \newcommand{\superposition}{/} \newcommand{\defectiver}{\downarrow} \newcommand{\defectivee}{\uparrow} \newcommand{\dominante}{\in} \newcommand{\dominee}{\ni} \newcommand{\facultatif}[1]{(#1)} \newcommand{\latent}[1]{^{#1}} \newcommand{\actualisee}[1]{\{#1\}} \newcommand{\intensifa}{\participanta} \newcommand{\intensifb}{\participantb} \newcommand{\intensifg}{\participantg} \newcommand{\unite}{{}^n} \newcommand{\constante}{a} \newcommand{\variable}{x} \newcommand{\fonctif}{p} \newcommand{\specifiant}{\vdash} \newcommand{\specifie}{\dashv} \newcommand{\realisee}{X} \newcommand{\pre}{?} \newcommand{\conformite}{\Arrowvert} \newcommand{\cohesionparadigmatiquebis}{\moveright 1pt \infty \moveleft 4pt |} \newcommand{\cohesionparadigmatique}{ȸ} \newcommand{\cohesionsyntagmatique}{\moveright 6pt {\diagup \moveleft 4pt \diagup} \moveleft 6pt {\diagdown \moveleft 4pt \diagdown } } \newcommand{\catalysee}{\geq} \newcommand{\connectif}{_\star X} \newcommand{\indicateur}{\moveright 2pt {\lower 2pt \circ} \moveleft 5pt \nearrow} \newcommand{\signal}{\unicode{9808}} \newcommand{\categoriedeglossemes}{\categorie{_\star g}} \newcommand{\glosseme}{{_\star g}} \newcommand{\nexus}{_\star n} \newcommand{\nexuscontenu}{\nu} \newcommand{\nexusexpression}{n} \newcommand{\pseudonexus}{_\star n_0} \newcommand{\pseudonexuscontenu}{\nu_0} \newcommand{\pseudonexusexpression}{n_0} \newcommand{\syntagmatique}{\semiotique \et} \newcommand{\interjection}{\nu_0} \newcommand{\interne}{i} \newcommand{\externe}{x} \newcommand{\paradigmatique}{\semiotique \ou} \newcommand{\langue}{L \paradigmatique} \newcommand{\texte}{L \syntagmatique} \newcommand{\semiotiquedenotative}{\interne \semiotique} \newcommand{\semiotiqueconnotative}{\externe \semiotique} \newcommand{\semiologie}{_2 \semiotique} \newcommand{\semiologieinterne}{\interne_2 \semiotique} \newcommand{\semiologieexterne}{\externe_2 \semiotique} \newcommand{\metasemiologie}{_3 \semiotique} \newcommand{\metasemiologieinterne}{\interne_3 \semiotique} \newcommand{\metasemiologieexterne}{\externe_3 \semiotique} \newcommand{\plerematique}{\boldsymbol\Gamma} \newcommand{\cenematique}{\boldsymbol G} \newcommand{\paradigme}[1]{\lt #1 \gt} \newcommand{\op}{Op} \newcommand{\operation}{\op} \newcommand{\substitution}{\bsemi} \newcommand{\commutation}{;} \newcommand{\variante}{var.} \newcommand{\var}{var.} \newcommand{\variantede}[1]{\variante(#1)} \newcommand{\varietede}[1]{\variete(#1)} \newcommand{\presyntagmatique}{\pre\syntagmatique} \newcommand{\ligne}{^{\#}\odot} \newcommand{\lignecontenu}{\gamma\ligne} \newcommand{\ligneexpression}{g\ligne} \newcommand{\preligne}{\pre \ligne} \newcommand{\prelignecontenu}{\pre \lignecontenu} \newcommand{\preligneexpression}{\pre \ligneexpression} \newcommand{\cote}{_{\#}\odot} \newcommand{\cotecontenu}{\gamma\cote} \newcommand{\coteexpression}{g\cote} \newcommand{\pleremateme}{\gamma} \newcommand{\cenemateme}{g} \newcommand{\denotatif}{\externe \cenemateme} \newcommand{\connotatif}{\externe \pleremateme} \newcommand{\determinant}{\ggg \moveleft 3pt \rightarrow} \newcommand{\determine}{ \leftarrow \moveleft 3pt \lll} \newcommand{\interdependant}{\leftrightarrow} \newcommand{\constellatif}{\arrowvert} \newcommand{\constellation}{\arrowvert} \newcommand{\element}{_\star l} \newcommand{\elements}{_\star ll} \newcommand{\elementcontenu}{\lambda} \newcommand{\elementscontenu}{\lambda \lambda} \newcommand{\elementexpression}{l} \newcommand{\elementsexpression}{ll} \newcommand{\nexie}{_\star nII} \newcommand{\nexiecontenu}{\nu II} \newcommand{\nexieexpression}{nII} \newcommand{\pseudonexie}{_\star nII_0} \newcommand{\pseudonexiecontenu}{\nu II_0} \newcommand{\pseudonexieexpression}{nII_0} \newcommand{\syntagmatie}{S} \newcommand{\syntagmatiecontenu}{\Sigma} \newcommand{\reduction}{\equiv} \newcommand{\transposition}{\underline{ \eqsim}} \newcommand{\taxeme}{_\star G} \newcommand{\connotateur}{x \Gamma} \newcommand{\continuer}{\lt} \newcommand{\continue}{\gt} \newcommand{\sommemaximale}{\odot} \newcommand{\taxemedirectif}{_\star D} \newcommand{\directif}{_\star D} \newcommand{\taxemeconstitutif}{_\star M_{\prime}} \newcommand{\constitutif}{_\star M_{\prime}} \newcommand{\taxemeflexif}{_\star P_{\prime}} \newcommand{\flexif}{_\star P_{\prime}} \newcommand{\flexifsimple}{_\star P} \newcommand{\thematif}{_\star P_t} \newcommand{\categoriedetaxemes}{\categorie{\taxeme}} \newcommand{\categorietaxemes}{\categoriedetaxemes} \newcommand{\taxemefondamental}{_\star P_\curvearrowright} \newcommand{\taxemeconverti}{_\star P_\curvearrowleft} \newcommand{\taxemesemifondamental}{_\star P_{\curvearrowleft\curvearrowright}} \newcommand{\taxemeambifondamental}{_\star P_{\curvearrowright\curvearrowleft}} \newcommand{\varietefondamentale}{_\star P_{\curvearrowright\curvearrowleft\curvearrowright}} \newcommand{\varietesemifondamentale}{_\star P_{\curvearrowright\curvearrowleft\curvearrowleft\curvearrowright}} \newcommand{\varieteconvertie}{_\star P_{\curvearrowright\curvearrowleft\curvearrowleft}} \newcommand{\varietedirection}{_\star P_d} \newcommand{\varietededirectionthematif}{_\star P_d} \newcommand{\varieteflexion}{_\star P_\tau} \newcommand{\varietedeflexionthematif}{_\star P_\tau} \newcommand{\thematifthematise}{_\star P_\vartheta} \newcommand{\unitehomogene}{{}^{\unicode{5777} /}} \newcommand{\succession}{\unitehomogene} \newcommand{\categoriehomogene}{{}_{\unicode{450}/}} \newcommand{\unitehomosousgenerique}{{}^{\unicode{5777}}} \newcommand{\categoriehomosousgenerique}{{}_{\unicode{5777}}} \newcommand{\ensemble}{\unitehomosousgenerique} \newcommand{\taxememedian}{_\star G_i} \newcommand{\taxemeperipherique}{_\star G_p} \newcommand{\taxemesemimedian}{_\star G_{pi}} \newcommand{\taxemeambimedian}{_\star G_{ip}} \newcommand{\varietemediane}{_\star G_{ipi}} \newcommand{\varietesemimediane}{_\star G_{ippi}} \newcommand{\varieteperipherique}{_\star G_{ipp}} \newcommand{\taxemecentral}{_\star G_c} \newcommand{\taxememarginal}{_\star G_m} \newcommand{\taxemesemicentral}{_\star G_{mc}} \newcommand{\taxemeambicentral}{_\star G_{cm}} \newcommand{\glossememedian}{_\star g_i} \newcommand{\glossemeperipherique}{_\star g_p} \newcommand{\glossemesemimedian}{_\star g_{pi}} \newcommand{\glossemeambimedian}{_\star g_{ip}} \newcommand{\gvarietemediane}{_\star g_{ipi}} \newcommand{\gvarietesemimediane}{_\star g_{ippi}} \newcommand{\gvarieteperipherique}{_\star g_{ipp}} \newcommand{\glossemecentral}{_\star g_c} \newcommand{\glossememarginal}{_\star g_m} \newcommand{\glossemesemicentral}{_\star g_{mc}} \newcommand{\glossemeambicentral}{_\star g_{cm}} \newcommand{\glossemepremier}{_\star g \prime} \newcommand{\varietecentrale}{_\star G_{cmc}} \newcommand{\varietesemicentrale}{_\star G_{cmmc}} \newcommand{\varietemarginale}{_\star G_{cmm}} \newcommand{\glossemedirectif}{_\star d} \newcommand{\gdirectif}{_\star d} \newcommand{\glossemeconstitutif}{_\star m_{\prime}} \newcommand{\gconstitutif}{_\star m_{\prime}} \newcommand{\glossemeflexif}{_\star p_{\prime}} \newcommand{\gflexif}{_\star p_{\prime}} \newcommand{\glossemethematif}{_\star p_{t}} \newcommand{\gthematif}{_\star p_{t}} \newcommand{\exposantfondamental}{_\star p^\curvearrowright} \newcommand{\exposantconverti}{_\star p^\curvearrowleft} \newcommand{\exposantsemifondamental}{_\star p^{\curvearrowleft\curvearrowright}} \newcommand{\exposantambifondamental}{_\star p^{\curvearrowright\curvearrowleft}} \newcommand{\gvarietesemifondamentale}{_\star p^{\curvearrowright\curvearrowleft\curvearrowleft\curvearrowright}} \newcommand{\gvarietefondamentale}{_\star p^{\curvearrowright\curvearrowleft\curvearrowright}} \newcommand{\gvarieteconvertie}{_\star p^{\curvearrowright\curvearrowleft\curvearrowleft}} \newcommand{\gthematie}{_\star p} \newcommand{\thematie}{_\star p} \newcommand{\gcaractere}{_\star q} \newcommand{\gvarietecentrale}{_\star g_{cmc}} \newcommand{\gvarietesemicentrale}{_\star g_{cmmc}} \newcommand{\gvarietemarginale}{_\star g_{cmm}} \newcommand{\symphtongue}{_\star f} \newcommand{\autophtongue}{_\star r} \newcommand{\autopleremateme}{\rho} \newcommand{\sympleremateme}{\phi} \newcommand{\autocenemateme}{r} \newcommand{\syncenemateme}{f} \newcommand{\constitutifsimple}{_\star M} \newcommand{\constituant}{_\star m} \newcommand{\exposant}{_\star p} \newcommand{\formatif}{\Pi_{\prime}} \newcommand{\formatifsimple}{\Pi} \newcommand{\prosodie}{P_{\prime}} \newcommand{\prosodiesimple}{P} \newcommand{\morphemeintense}{\pi_{n}} \newcommand{\morphemeextense}{\pi_{\nu}} \newcommand{\prosodemeintense}{p_{n}} \newcommand{\prosodemeextense}{p_{\nu}} \newcommand{\morphemedirectif}{\delta} \newcommand{\pleremeconstitutif}{\mu_{\prime}} \newcommand{\morphemeflexif}{\pi_{\prime}} \newcommand{\plerematemethematif}{\pi_{t}} \newcommand{\plereme}{\mu} \newcommand{\morpheme}{\pi} \newcommand{\prosodemedirectif}{d} \newcommand{\cenemeconstitutif}{m_{\prime}} \newcommand{\prosodemeflexif}{p_{\prime}} \newcommand{\cenematemethematif}{p_{t}} \newcommand{\ceneme}{m} \newcommand{\prosodeme}{p} \newcommand{\catalysepar}{\ge} \newcommand{\implique}{\subset} \newcommand{\impliquepar}{\supset} \newcommand{\caractere}{_\nu} \newcommand{\caractereintense}{_\star C_n} \newcommand{\caractereextense}{_\star C_\nu} \newcommand{\derivatif}{\Phi} \newcommand{\radical}{P} \newcommand{\caracterenominal}{K_n} \newcommand{\caractereverbal}{K_\nu} \newcommand{\consonne}{F} \newcommand{\voyelle}{R} \newcommand{\accent}{C_n} \newcommand{\modulation}{C_\nu} \newcommand{\taxemeprimaire}{_\star G_1} \newcommand{\taxemesecondaire}{_\star G_2} \newcommand{\taxemesemiprimaire}{_\star G_{21}} \newcommand{\taxemeambiprimaire}{_\star G_{12}} \newcommand{\varieteprimaire}{_\star G_{121}} \newcommand{\varietesemiprimaire}{_\star G_{1221}} \newcommand{\varietesecondaire}{_\star G_{122}} \newcommand{\taxemeprincipal}{_\star G_I} \newcommand{\taxemeaccessoire}{_\star G_{II}} \newcommand{\taxemesemiprincipal}{_\star G_{s}} \newcommand{\taxemeambiprincipal}{_\star G_{a}} \newcommand{\varieteprincipale}{_\star G_{aI}} \newcommand{\varietesemiprincipale}{_\star G_{as}} \newcommand{\varieteaccessoire}{_\star G_{aII}} \newcommand{\glossemeprimaire}{_\star g_1} \newcommand{\glossemesecondaire}{_\star g_2} \newcommand{\glossemesemiprimaire}{_\star g_{21}} \newcommand{\glossemeambiprimaire}{_\star g_{12}} \newcommand{\gvarieteprimaire}{_\star g_{121}} \newcommand{\gvarietesemiprimaire}{_\star g_{1221}} \newcommand{\gvarietesecondaire}{_\star g_{122}} \newcommand{\glossemeprincipal}{_\star g_I} \newcommand{\glossemeaccessoire}{_\star g_{II}} \newcommand{\glossemesemiprincipal}{_\star g_{s}} \newcommand{\glossemeambiprincipal}{_\star g_{a}} \newcommand{\gvarieteprincipale}{_\star g_{aI}} \newcommand{\gvarietesemiprincipale}{_\star g_{as}} \newcommand{\gvarieteaccessoire}{_\star g_{aII}} \newcommand{\unitemonoplane}{^{\glosseme}} \newcommand{\monoplan}{\unitemonoplane} \newcommand{\signe}{^{\gamma g}} \newcommand{\uniteintrinseque}{\smile} \newcommand{\unitenonintrinseque}{\frown} \newcommand{\glossematieintrinseque}{\asymp} \newcommand{\categorieintrinseque}[1]{>#1<} \newcommand{\glossie}[1]{)#1(} \newcommand{\cenematieintrinseque}{g^\glossematieintrinseque} \newcommand{\cenematienonintrinseque}{g^\unitenonintrinseque} \newcommand{\uniteheterogene}[1]{#1^\#} \newcommand{\categorieheterogene}[1]{#1_\#} \newcommand{\categorieheterosousgenerique}[1]{#1_{\#\prime}} \newcommand{\uniteheterotypique}{^{\#\prime}} \newcommand{\categorieheterotypique}[1]{#1_{\#\prime}} \newcommand{\uniteheterosousgenerique}{\syntagme} \newcommand{\syntagme}{_\star s} \newcommand{\syntagmecontenu}{\sigma} \newcommand{\syntagmeexpression}{s} \newcommand{\textdoublebarpipe}{\unicode{450}} \newcommand{\unitehomotypique}{^{\times\prime}} \newcommand{\categoriehomotypique}[1]{#1_{\times\prime}} \newcommand{\uniteheterosoustypique}{^\textdoublebarpipe} \newcommand{\categorieheterosoustypique}[1]{#1_\textdoublebarpipe} \newcommand{\unitehomosoustypique}{^\times} \newcommand{\categoriehomosoustypique}[1]{#1_\times} \newcommand{\suite}{\uniteheterosoustypique} \newcommand{\groupe}{\unitehomosoustypique} \newcommand{\uniteheterotagmatique}{^{\neq}} \newcommand{\categorieheterotagmatique}[1]{#1_{\neq}} \newcommand{\unitehomotagmatique}{^{=}} \newcommand{\categoriehomotagmatique}[1]{#1_{=}} \newcommand{\uniteheterosoustagmatique}{^\textdoublebarpipe} \newcommand{\categorieheterosoustagmatique}[1]{#1_\textdoublebarpipe} \newcommand{\conglomerat}{\uniteheterotagmatique} \newcommand{\coomplexe}{\unitehomotagmatique} \newcommand{\uniteheterosoustagmatique}{^{\neq\prime}} \newcommand{\categorieheterosoustagmatique}[1]{#1_{\neq\prime}} \newcommand{\unitehomosoustagmatique}{^{= \prime}} \newcommand{\categoriehomosoustagmatique}[1]{#1_{= \prime}} \newcommand{\uniteheterosoustagmatique}{^\textdoublebarpipe} \newcommand{\categorieheterosoustagmatique}[1]{#1_\textdoublebarpipe} \newcommand{\uniteminimale}{^{(n)}} \newcommand{\uniteminimalede}[1]{^{(#1)}} \newcommand{\Uniteminimale}[1]{{#1}^{(n)}} \newcommand{\uniteidentite}{^{\substitution}} \newcommand{\unitedifferentielle}{^{???}} \newcommand{\Unitedifferentielle}[1]{{#1}^{???}} \newcommand{\expressionpour}{E} \newcommand{\permutation}{!} \newcommand{\mot}{^{(\gamma g \permutation)}} \newcommand{\racine}{\sqrt{}} \newcommand{\affixe}{a} \newcommand{\steme}{t} \newcommand{\formant}{fm} \newcommand{\alternative}{:} \newcommand{\taxie}{\Unite{\taxeme}} \newcommand{\intense}{_n} \newcommand{\extense}{_\nu} \newcommand{\caracteristique}{_\star q^S} \newcommand{\caracteristiquecontenu}{۹^S} \newcommand{\caracteristiqueexpression}{q^S} \newcommand{\caracteristiqueintense}{\caracteristique \intense} \newcommand{\caracteristiqueintensecontenu}{\caracteristiquecontenu \intense} \newcommand{\caracteristiqueintenseexpression}{\caracteristiqueexpression \intense} \newcommand{\caracteristiqueextense}{\caracteristique \extense} \newcommand{\caracteristiqueextenseexpression}{\caracteristiqueexpression \extense} \newcommand{\caracteristiquenominale}{۹^S \intense} \newcommand{\caracteristiqueverbale}{۹^S \extense} \newcommand{\pseudocaracteristique}{_\star q_0} \newcommand{\pseudocaracteristiquecontenu}{۹_0} \newcommand{\pseudocaracteristiqueexpression}{q_0} \newcommand{\theme}{_\star \unicode{421}^S} \newcommand{\themecontenu}{ϑ^S} \newcommand{\themeexpression}{\unicode{421}^S} \newcommand{\themeintense}{\theme \intense} \newcommand{\themeintenseexpression}{\themeexpression \intense} \newcommand{\themeextense}{\theme \extense} \newcommand{\themeextensecontenu}{\themecontenu \extense} \newcommand{\themeextenseexpression}{\themeexpression \extense} \newcommand{\themenominal}{ϑ^S \intense} \newcommand{\themesyllabique}{\unicode{421}^S_n} \newcommand{\pseudotheme}{_\star \unicode{421}_0} \newcommand{\pseudothemecontenu}{ϑ_0} \newcommand{\pseudothemeexpression}{\unicode{421}_0} \newcommand{\pseudosyllabe}{\unicode{421}_0} \newcommand{\relatif}{\syntagmateme X} \newcommand{\verbe}{\conjonction(\nexus)} \newcommand{\compositum}{\syntagme^S} \newcommand{\juxtaposition}{\syntagme^\unicode{421}} \newcommand{\conjonction}{_\star \unicode{421}_0X} \newcommand{\conjonctioncontenu}{ϑ_0X} \newcommand{\opGg}{\boldsymbol{_\star Gg}} \newcommand{\opg}{\boldsymbol{_\star g}} \newcommand{\opgI}{\boldsymbol{_\star gI}} \newcommand{\opgII}{\boldsymbol{_\star gII}} \newcommand{\opgIII}{\boldsymbol{_\star gIII}} \newcommand{\opgIV}{\boldsymbol{_\star gIV}} \newcommand{\sopg}[1]{\boldsymbol{_\star g #1}} \newcommand{\opn}{\boldsymbol{_\star n}} \newcommand{\ops}{\boldsymbol{_\star s}} \newcommand{\opG}{\boldsymbol{_\star G}} \newcommand{\opGIII}{\boldsymbol{_\star GIII}} \newcommand{\sopG}[1]{\boldsymbol{_\star G #1}} \newcommand{\opt}{\boldsymbol{_\star t}} \newcommand{\operatoire}[1]{/#1/} \newcommand{\syntagmateme}{_\star z} \newcommand{\syntagmatemecontenu}{\zeta} \newcommand{\syntagmatemeexpression}{z} \newcommand{\syllabe}{z} \newcommand{\nom}{\zeta} \newcommand{\jonction}{\syntagmatie \unitecomplexe} \newcommand{\jonctioncontenu}{\syntagmatiecontenu \unitecomplexe} \newcommand{\jonctionexpression}{\syntagmatieexpression \unitecomplexe} \newcommand{\espece}{_{ᚑ \prime } \odot} \newcommand{\sousespece}{_ᚑ \odot} \newcommand{\type}{_{\times \prime} \odot} \newcommand{\soustype}{_{\times} \odot} \newcommand{\tagma}{_{=} \odot} \newcommand{\soustagma}{_{= \prime} \odot} \newcommand{\sommeminimale}{I} \newcommand{\Ufonction}{\fonction} \newcommand{\Ufonctif}{F} \newcommand{\Uchaine}{\Ufonctif^N} \newcommand{\Uunite}{\Ufonctif^n} \newcommand{\Uidentique}{\equiv} \newcommand{\Uparadigme}[1]{\lt #1 \gt} \newcommand{\Usomme}[1]{\Uparadigme{#1}^+} \newcommand{\Ucategorie}[1]{\categorie{#1}} \newcommand{\Ucategorieexhaustive}[1]{\categorie{#1}^+} \newcommand{\Uderivation}{\lhd} \newcommand{\UDerivation}{\rhd} \newcommand{\avoir}{???} $
Accueil Contact

Définitions sans opposées

Nous donnons ici les définitions qui ne sont pas opposées à d'autres définitions (d'après les oppositions données dans l'édition papier de Whitfield).
Nombre de définitions sans opposées : 153.

Definiendum Definiens
temps Un temps est une Op qui entre dans une procédure.
procédure Une procédure est une classe d'Ops avec détermination mutuelle.
générique  Une Op spécifique ayant donné un résultat est dite générique s'il est affirmé qu'elle peut être effectuée sur une classe très étendue ou sur un nombre élevé de classes.
spécifique  Une Op ayant donné un résultat est dite spécifique s'il est affirmé qu'elle peut être effectuée sur une ou plusieurs classes d'objets par opposition à d'autres classes où cette opération ne peut être effectuée.
spéciale Une Op générale avec un résultat donné est appelée spéciale s'il est affirmé qu'elle peut être effectuée sous des conditions relativement restreintes.
générale Une Op avec un résultat donné est dite générale s'il est affirmé que cette Op peut être effectuée sur n'importe quel objet sous certaines conditions, mais non sous toutes les conditions.
fonction Une fonction (symbole : $\fonction$) est une dépendance qui satisfait aux conditions pour une analyse. - (L'absence d'une fonction est symbolisée par $\overline{\fonction}$; cf. Défs 103-104)
hiérarchie Une hiérarchie (symbole : $\hierarchie$) est une classe de classes. Par convention, $\hierarchie p$ signifiera toujours : la hiérarchie composée de tous les $p$.
complexe d'analyses Un complexe d'analyses est une classe d'analyses d'une seule et même classe.
fonctif Un fonctif (symbole : $p, q, r ...$) est un objet qui a une fonction par rapport à d'autres objets. - Un fonctif est dit avoir une fonction  à (et non  "être fonction de") un autre fonctif. On dira d'un fonctif qu'il contracte sa fonction.
dérivé Les dérivés d'une classe sont ses composantes et les composantes des composantes d'une seule et même déduction - La classe est dite inclure (symbole : $\inclut$) ses dérivés et leurs fonctions mutuelles et les dérivés et leurs fonctions mutuelles sont dits entrer dans (symbole : $\entre$) la classe.
degré Le degré (symbole : $1, 2, 3 ...$ après le symbole du dérivé) de dérivés fait référence au nombre de classes à travers lesquelles ils ont une fonction avec leur plus basse classe commune. - Si le nombre est $0$, les dérivés sont dits être de premier degré ; si le nombre est $1$, les dérivés sont dits être de second degré, et ainsi de suite.
rang Les dérivés de même degré appartenant à un seul et même procès ou à un seul et même système sont dits constituer un rang.
mutation Une mutation (symbole : $\mutation$) est une fonction existant entre des dérivés du premier degré d'une seule et même classe, une fonction qui a une relation à une fonction entre d'autres dérivés de premier degré d'une seule et même classe et appartenant au même rang.
sémiotique Une sémiotique (symbole : $\semiotique$) est une hiérarchie dont chacune des composantes admet une analyse ultérieure en classes définies par relation mutuelle, de telle sorte que chacune de ces classes admette une analyse en dérivés définis par mutation mutuelle.
plan Un plan (symbole : $\plan$) est une composante d'une sémiotique.
sémiotique dénotative Une sémiotique dénotative (symbole : $\semiotiquedenotative$) est une sémiotique dont aucun des plans n'est une sémiotique.
manifestation Une manifestation est une sélection entre des hiérarchies et entre des dérivés de hiérarchies différentes.
matière  Une matière est une classe de variables qui manifeste plus d'une chaîne dans plus d'une syntagmatique, et/ou plus d'un paradigme dans plus d'une paradigmatique.
opération Une opération (symbole : $\op$) est une description qui est conforme à Pr 1.
sémiotique objet Une sémiotique qui entre comme plan dans une sémiotique est dite sémiotique objet de cette dernière ou sémiotique objet pour cette dernière.
métasémiologie Une métasémiologie (symbole : $\metasemiologie$) est une méta-(sémiotique scientifique) dont les sémiotiques objets sont des sémiologies.
participation extrême Une participation extrême est une participation dans laquelle les participants ont le plus grand nombre possible de variantes communes.
configuration
Une configuration est la fonction entre les participants et les cases dans une corrélation.
insister
Un participant est dit insister sur une case si cette case est incluse dans toutes les variations de premier degré du participant.
⋮α $\participanta$ = occupant la case $\casea$, en opposition à $\caseb$ ou à $\casebc$ ;
⋮Α $\participantA$ =occupant la case $\caseb$ ou $\casebc$, en opposition à $\casea$ ;
⋮β $\participantb$ = occupant la case $\casea$, en opposition à $\caseb$ ou en opposition à $\caseb$ et à $\casec$ ;
⋮Β $\participantB$ = occupant la case $\caseb$, en opposition à $\casea$ ou en opposition à $\casea$ et à $\casec$ ;
⋮γ $\participantg$ = occupant la case $\caseab$, en opposition à $\casec$ ou sans opposition entre les cases.
⋮Γ $\participantG$ = occupant la case $\casec$, en opposition à $\casea$ et à $\caseb$.
⋮Γ2 $\participantG_2$ = occupant alternativement les cases $\casea$ et $\caseb$ avec opposition mutuelle et chacune en opposition à $\casec$ ou bien sans opposition de case.
zone Une zone (symbole : $\zonea$, $\zoneb$, $\zoneg$) est la totalité de $\participanta$ et de $\participantA$ (et de $\participanta'$, $\participantA'$, $\participanta,$, $\participantA,$) ou de $\participantb$ et de $\participantB$ (et de $\participantb'$, $\participantB'$, $\participantb,$, $\participantB,$, $\participantb_2$, $\participantB_2$) ou de $\participantg$, $\participantG$, et, quand il convient, de  $\participantG_2$ (et de $\participantg'$, $\participantG'$, $\participantG_2'$, $\participantg,$, $\participantG,$, $\participantG_2,$, $\participantg_2$).
dimension Une dimension est une classe qui entre comme facteur multiplicatif dans une classe.
parts Des compartiments sont des corrélats qui entrent dans une dimension.
somme Une somme est une classe qui a une fonction avec une ou plusieurs autres classes dans le même rang.
case fonctionnelle [Une case fonctionnelle est une fonction avec tous ses fonctifs possibles. ]6
6 Quelques temps après que le tapuscrit ait été préparé à partir du manuscrit, les définitions d'établissement, d'établissant et d'établie ont été révisées afin de présupposer une définition de case fonctionnelle. Des indications ont été alors ajoutées au manuscrit pour insérer cette nouvelle définition et modifier les trois autres conformément au dossier des cartes des définitions. Les trois définitions révisées (à comparer aux Défs 98, 99 et 100 ci-dessous) apparaissent dans le dossier comme suit :
Un établissement est une relation qui existe entre un paradigme de sommes et une case fonctionnelleentrant dans une ou plusieurs sommes et que le paradigme des sommescontracte en tant que constante.
La case fonctionnelle qui a un établissement à un paradigme de sommes est appelée établissante (symbole : $\etablissante$). La case fonctionnelle est dite établir chacune des sommes dans laquelle elle entre.
Une somme dans laquelle entre une case fonctionnelle qui a un établissement au paradigme de la somme est appelée établie (symbole : $\etablie$).

Plus tard encore - comme cela a été enregistré dans un rapport multigraphié d'un colloque tenu le 2 décembre 1957 - Hjelmslev a adopté la stratégie de définition suivante :

Case fonctionnelle - comme ci-dessus ;
Établissement - la relation entre une fonction et sa case fonctionnelle;
Cellule - case fonctionnelle ayant une cohésion à un paradigme de sommes, qui (le paradigme) contracte la cohésion en tant que constante [comparer à Déf 216, ci-dessous (F.J.W)]. La cohésion est appelée une consolidation, et la cellule est dite consolider la constante. (F.J.W)
établissement Un établissement est une relation qui existe entre une somme et une fonction entant dans cette somme, et que la fonction contracte comme constante. 7
7Ceci est la forme sous laquelle la définition apparaît aussi dans OSG (page 76), dans PTL elle a été modifiée par la suppression de la dernière condition. (F.J.W.)
application, suspension Etant donné un fonctif qui est présent sous certaines conditions et absent sous certaines autres conditions, alors, dans les conditions où le fonctif est présent, on dit qu'il y a application du fonctif, et dans ces conditions le fonctif est dit s'appliquer - et dans les conditions où le fonctif est absent, on dit qu'il y a suspension (symbole : $\suspension$ ) du fonctif, et dans ces conditions le fonctif est dit être suspendu.
superposition Une superposition (symbole : $\superposition$) est une mutation suspendue entre deux fonctifs.
syncrétisme Un syncrétisme est la catégorie établie par une superposition.
séjonction Une séjonction est la corrélation entre la catégorie de corrélats suspendus et la catégorie des corrélats s'appliquant dans une catégorie.
défective Une catégorie dans laquelle entre une séjonction est dite défective quand la séjonction s'applique
dominance Une dominance est une solidarité entre d'une part une variante et d'autre part une superposition ou une séjonction.
section Des sections sont des objets qui sont enregistrés dans une seule dissection comme dépendant de l'objet disséqué et les uns des autres.
interdépendance Une interdépendance est une fonction entre deux constantes.
grandeur Une grandeur est un fonctif qui n'est pas une fonction.
catégorie fonctionnelle
Une catégorie fonctionnelle est la catégorie des fonctifs qui sont enregistrés dans une seule analyse avec une fonction donnée comme base de l'analyse.
catégorie fonctivique Les catégories fonctiviques sont les catégories qui sont enregistrées par articulation d'une catégorie fonctionnelle selon les possibilités fonctiviques.
élément Les éléments (symbole : $\elements$ ) sont les membres d'une catégorie fonctivique et leurs dérivés particuliers.
pré-élément Les pré-relats sont les relats qui sont enregistrés dans une Op sans qu'il soit possible de déterminer dans cette Op si l'enregistrement peut être maintenu de manière définitive. -- De même, on peut parler de pré-éléments, de pré-unités, de pré-parties, etc. et, en général, de pré-fonctifs. Les pré-fonctifs sont symbolisés au moyen du préfixe $\pre$.
réduction Une réduction est la suppression de l'enregistrement d'un pré-fonctif dans une classe fonctivique donnée. -- Le symbole pour "est (sont) réduit(s) à" est $\reduction$.
conformes Deux fonctifs sont dits être conformes (symbole : $\conformite$ ) si chaque dérivé particulier de l'un des fonctifs contracte exclusivement les mêmes fonctions comme dérivé particulier de l'autre fonctif, et vice versa.
catalyse La catalyse est l'enregistrement de cohésions par le remplacement d'une grandeur par une autre avec laquelle elle a une substitution. -- La grandeur remplacée est dite être catalysée par (symbole : $\catalysee$) la grandeur qui la remplace.
connectif Un connectif (symbole : *X) est un fonctif qui sous certaines conditions est solidaire avec la relation établissant des unités complexes d'un certain degré9. -- Le symbole $\connectif p$ se lit "le connectif $p$". Le symbole $\connectif (p \unite)$ se lit "connectif pour l'unité $p \unite$".
9Ceci est la forme sous laquelle la définition apparaît aussi dans OSG (page 65), dans PTL (pages 93, 169) elle a été modifiée par la suppression des mots "la relation établissant". Noter que cela aurait entraîné le changement correspondant dans la Rg 54. (F.J.W.)
transformation Une transformation est une réduction par transfert d'une catégorie fonctivique à une autre.
indicateur Un indicateur (symbole : $\indicateur$) est une partie qui entre dans un ou deux fonctifs de telle sorte que les fonctifs ont une substitution mutuelle si la partie est déduite et que l'on trouve sous certaines conditions données dans tous les fonctifs d'un degrédonné.
signal
Un signal (symbole : $\signal$) est un indicateur qui ne se trouve pas, dans des conditions données, dans tous les plans (cf. Déf 153) -- Le symbole $\signal p$ se lit "le signal $p$" ; le symbole $\signal (p)$ se lit "le signal pour $p$".
connotateur Un connotateur (symbole : $\connotateur$) est un indicateur qui se trouve dans tous les plans sous des conditions données. (Cf. Déf 200)
signal Des signaux (symbole : $\signal$) sont des invariantes sans fonction mutuelle.
converses Des fonctifs converses sont des fonctifs qui acquièrent une substitution mutuelle quand les connotateurs qui entrent en eux sont retranchés.
circonscrire Circonscrire un fonctif c'est fixer comme réalisée une fonction entre des sommes dans une cohésion entre dérivés du plus haut degré possible.
résoudre Résoudre un syncrétisme c'est introduire la variété du syncrétisme qui ne contracte pas la superposition qui établit le syncrétisme.
plan de contenu ou plérématique et plan d'expression ou cénématique

Les appellations plan de contenu ou plérématique (symbole : $\plancontenu$) et plan d'expression ou cénématique (symbole : $\planexpression$) sont des noms distincts attribués arbitrairement aux plans d'une sémiotique dont le nombre est deux et seulement deux.

extrinsèque Une somme qui contracte une fonction hétéroplane est appelée extrinsèque. Le symbole pour une unité extrinsèque est $\uniteextrinseque{}$ ; le symbole pour une catégorie extrinsèque est $\categorieextrinseque{}$.
définition Une définition est une analyse d'une glossématie.
glossème
Les glossèmes (symbole : $\glosseme$) sont des non-signaux qui sont des invariantes du plus haut degré dans une sémiotique.
série d'Ops Une série d'Ops est une composante d'une procédure qui n'est pas elle-même une composante d'une procédure.
ligne de contenu et ligne d'expression Ligne de contenu (symbole : $\lignecontenu$) et ligne d'expression (symbole : $\ligneexpression$) sont des désignations spéciales attribuées arbitrairement aux lignes dont le nombre dans une syntagmatique est deux et deux seulement.
chaîne supérieure  Les chaînes supérieures sont les éléments de plus haut degré enregistrés dans l'Op précédente.
lexie Les lexies sont les éléments du plus haut degré qui peuvent chacun constituer seul une unité catalysée du degré inférieur précédent.
lexèmes Les lexèmes sont des parties de lexies.
syllabème  Les syllabèmes sont les éléments de plus haut degré qui peuvent, chacun pris séparément, constituer une lexie non catalysée.
syllabie  Une syllabie est une unité dont les parties sont des syllabèmes.
transposition Une transposition (symbole : $\transposition$) est une substitution entre fonctifs converses.
traduction Une traduction est une transposition sémiotique.
taxème Un taxème (symbole : $\taxeme$) est un élément virtuel.
connotateur Un connotateur (symbole : $\connotateur$) est un taxème externe. (cf. Déf op qui précède immédiatement la Déf 154).
redistribution Une redistribution est une distribution des composantes de classes données sur d'autres classes.
catégorie de taxèmes Une catégorie de taxèmes (symbole : $\categorietaxemes$) est une catégorie fonctivique dont les éléments de plus haut degré sont des taxèmes.
contact Un contact est une relation entre sémiotiques et entre dérivés de différentes sémiotiques. 
base sémiotique Quand une unité de variétés d'une seule et même classe sémiotique est établie par sélection (suivant Règ 3 1°), le terme base sémiotique est utilisé pour la variété qui entre dans l'unité comme constante mais pas en tant que variable.
ante-sémiotique, post-sémiotique L'invariante qui a une relation avec la base sémiotique d'une classe sémiotique est appelée l'ante-sémiotique de la classe, et la classe est appelée sa post-sémiotique.
continuation, changement sémiotique Une continuation ou un changement sémiotique est le contact entre une ante-sémiotique et sa post-sémiotique et entre les dérivés d'une ante-sémiotique et les dérivés de sa post-sémiotique.  Les post-sémiotiques et leurs dérivés sont dits continuer (symbole : $\continuer$) respectivement leur ante-sémiotique et ses dérivés, et ils sont dits être continués par (symbole : $\continue$) respectivement leurs post-sémiotiques et leurs dérivés.
famille sémiotique On dit que les sémiotique génétiquement reliées constituent ensemble une famille sémiotique.
emprunt Quand un contact d'emprunt est présent entre deux sémiotiques et (cf. Règ 69) que la solidarité entre leurs variétés est réalisée comme sélection entre des dérivés des variétés, le dérivé sélectionnant est appelé un emprunt à la sémiotique qui inclut le dérivé sélectionné.
cellule La cellule d'une somme est la plus petite somme qui entre dans la somme et qui est établie par une fonction qui établit aussi la somme elle-même.
cohésion cellulaire Une cohésion cellulaire est une cohésion établissant une cellule.
rôle Un rôle est la relation d'un fonctif à une fonction donnée dans une somme donnée.
somme maximale Une somme maximale (symbole $\sommemaximale$) est une somme qui est un dérivé du degré le plus bas possible d'une autre somme. NB: minimal et maximal ne sont pas opposés.
direction Une direction est une cohésion cellulaire pour les lexies et les unités de lexies.
succession Une succession (symbole :$\succession$) est une unité homogène.
formatif simple Les formatifs simples (symbole : $\formatifsimple$) sont les flexifs simples plérématiques. Ce terme est purement opératoire jusqu'à γIII2 (cf. Déf 287).
prosodie simple Les prosodies simples (symbole : $\prosodiesimple$) sont les flexifs simples cénématiques. Ce terme est purement opératoire jusqu'à γIII2 (cf. Déf 288).
intracohésion Une intracohésion est la cohésion cellulaire d'un ensemble.
variété marginale de l'ambicentral Quand un ambicentral entre dans un ensemble maximal dans lequel il contracte l'intracohésion en tant que variable, la variété marginale de l'ambicentral est dite être présente (symbole : $\varietemarginale$).
variété semi-centrale de l'ambicentral Quand un ambicentral entre dans un ensemble maximal dans lequel il contracte l'intracohésion en tant que constante relativement à un relat et comme variable relativement à un autre relat, la variété semi-centrale de l'ambicentral est dite être présente (symbole : $\varietesemicentrale$).
variété centrale de l'ambicentral Quand un ambicentral entre dans un ensemble maximal dans lequel il contracte une intracohésion en tant que constante, la variété centrale de l'ambicentral est dite être présente (symbole : $\varietecentrale$).
voyelle Une voyelle (symbole : $\voyelle$) est une thématie centripète cénématique.
endocohésion Une endocohésion est la cohésion cellulaire d'une succession.
variété secondaire de l'ambiprimaire Quand un ambiprimaire entre dans une succession maximal dans laquelle il ne contracte pas d'endocohésion, la variété secondaire de l'ambiprimaire est dite être présente (symbole : $\varietesecondaire$).
variété semi-primaire de l'ambiprimaire Quand un ambiprimaire entre dans une succession maximale dans laquelle à la fois il contracte et ne contracte pas une endocohésion, la variété semi-primaire de l'ambiprimaire est dite être présente (symbole : $\varietesemiprimaire$).
variété primaire de l'ambiprimaire Quand un ambiprimaire entre dans une succession maximale dans laquelle il contracte une endocohésion, la variété primaire de l'ambiprimaire est dite être présente (symbole : $\varieteprimaire$).
ordre Un ordre est la plus petite catégorie de taxèmes qui est définie par établissement d'unités. (voir N 49)
glossème premier Un glossème premier (symbole : $\glossemepremier$) est une catégorie fonctivique dont les éléments de plus haut degré sont des glossèmes. (Un $\glossemepremier$ est une dimension - voir Déf. 88).
côté de contenu, côté d'expression Les appellations côté de contenu (symbole : $\cotecontenu$) et côté d'expression (symbole : $\coteexpression$) sont attribuées arbitrairement comme noms distincts pour les côtés dont le nombre dans une paradigmatique est deux et seulement deux.
espèce Une espèce est un membre dans un plan qui contracte une corrélation contradictoire et/ou contraire. (Ce terme a déjà été introduit de manière opératoire dans Règ. 143)
espèce simple   Une espèce simple est un membre d'un plan qui contracte une corrélation simple. (Ce terme a déjà été introduit de manière opératoire dans la Règ 143).
sous-espèce Une sous-espèce est un membre d'une espèce qui contracte une corrélation contradictoire et/ou contraire. (Ce terme a déjà été introduit de manière opératoire dans Règ. 145.)
sous-espèce simple Une sous-espèce simple est un membre d'une espèce qui contracte une corrélation simple. (Ce terme a déjà été introduit de manière opératoire dans Règ 145).
type Un type est un membre d'une sous-espèce qui contracte une corrélation contradictoire et/ou contraire. (Ce terme a déjà été introduit de manière opératoire dans la Règ. 146).
type simple Un type simple est un membre d'une une sous-espèce qui contracte une corrélation simple (ce terme a déjà été introduit de manière opératoire dans la Règ 146).
sous-type Un sous-type est un membre dans un type qui contracte une corrélation contradictoire et/ou contraire. (Ce terme a déjà été introduit de manière opératoire dans la Règ 147).
sous-type simple Un sous-type simple est un membre d'un type qui contracte une corrélation simple. (Ce terme a déjà été introduit de manière opératoire in Règ 147)
autocénématème Un autocénématème (symbole : $\autocenemateme$) est un autophtongue cénématique.
syncénématème Un syncénématème (symbole : $\syncenemateme$) est un symphtongue cénématique.
prosodème intense Un prosodème intense (symbole : $\prosodemeintense$) est un prosodème qui entre dans un accent.
prosodème extense Un prosodème extense (symbole : $\prosodemeextense$) est un prosodème qui entre dans une modulation.
tagma Un tagma est un membre, dans un sous-type, qui contracte une corrélation contradictoire et/ou contraire (ce terme a déjà été introduit de manière opératoire dans la Règ 149).
tagma simple Un tagma simple est un membre, dans un sous-type, qui contracte une corrélation simple.
sous-tagma Un sous-tagmata est un membre, dans un tagma, qui contracte une corrélation contradictoire et/ou contraire (ce terme a déjà été introduit de manière opératoire dans Règ 150).
sous-tagma simple Un sous-tagma simple est un membre, dans un tagma, qui contracte une corrélation simple (ce terme a déjà été introduit de manière opératoire dans Règ 150).
biplan Un dérivé biplan est un dérivé de deux plans.
signe Un signe (symbole : $\signe$) est une unité pluriplane.
somme intrinsèque Une somme intrinsèque est une somme qui est établie par une fonction homoplane.
symboles :
$\uniteintrinseque$  unité intrinsèque ; (non glossématie)
$\categorieintrinseque{}$ catégorie intrinsèque
$\glossematieintrinseque$ glossématie intrinsèque
somme minimale Une somme minimale est une somme dans laquelle n'entre pas exclusivement des sommes de même degré. - Le symbole pour une somme minimale est $\sommeminimale$ ; pour une unité minimale le symbole $\uniteminimale$ peut aussi être utilisé - Une somme minimale est une somme de la première puissance.
puissance La puissance d'une somme (symbole : $I$, $II$, $III$, ... placé après le symbole d'une somme) renvoie au nombre maximal d'analyses uniques à travers lesquelles la somme peut être analysée exclusivement en sommes minimales de même degré. Si ce nombre est zéro, la somme est dite être de la première puissance, si ce nombre est un, la somme est dite être de la deuxième puissance, et ainsi de suite.
congruence Une congruence est une relation qui établie une unité d'identité.
glossaire Un glossaire est un répertoire sur des signes minimaux.
permutation Une permutation (symbole : $\permutation$) est une mutation entre les parties d'une chaîne.
mot Les mots (symbole : $\mot$) sont les signes de la plus petite puissance, définis par la permutation des glossématies qui entrent dans ceux-ci.
lexique Un lexique est un répertoire de mots.
alternative Une alternative (symbole : $\alternative$) est une commutation entre affixes et/ou formants qui ont chacun une relation à une plérie.
supplétivisme Un supplétivisme est une synonymie entre des variétés de stèmes particulières d'une seule et même sémiotique.
taxie Une taxie (symbole : $\taxie$) est une unité de taxème.
polyphtongue Une polyphtongue est un groupe différentiel de taxèmes et/ou de variétés de taxèmes centripètes.
caractéristique Une caractéristique (symbole : $\caracteristique$) est un groupe minimal de glossèmes de caractères.
nexie Une nexie (asymbole : $\nexie$) est un syntagme non minimal dans lequel entre une suite de caractères.
syntagmatie Une syntagmatie (symbole : $\syntagmatie$) est un syntagme non minimal dans lequel n'entre pas de suite de caractères.
jonction Une jonction (symbole : $\jonction$) est une syntagmatie dans laquelle entre deux syntagmatèmes ou plus.
thème Un thème (symbole : $\theme$) est une unité qui a une relation établissante de syntagme à une caractéristique.
monophtongue Une monophtongue est un centripète qui entre comme l'unique centripète dans un thème.
pronom  Un pronom est un syntagmatème ou un pseudothème dans lequel entre un ou plusieurs radicaux qui soient des thématifs.
pseudothème Un pseudothème (symbole : $\pseudotheme$) est un ensemble de thématies ou une variante d'ensemble de thématies qui n'est pas un thème intense et qui n'entre pas dans un thème intense minimal.
pseudosyllabe Une pseudosyllabe (symbole : $\pseudosyllabe$) est un pseudothème cénématique.
numéral  Un numéral est un syntagmatème ou un pseudothème dont l'unité radicale qui y entre est une unité d'identité.
pseudocaractéristique Une pseudocaractéristique (symbole : $\pseudocaracteristique$) est une caractéristique ou une variante de caractéristique qui ne contracte pas de relation établissante de syntagme.
pseudonexus Un pseudonexus (symbole : $\pseudonexus$) est un non nexus qui entre dans une ligne et dans un rang avec nexus.
interjection Une interjection (symbole : $\interjection$) est un pseudonexus plérématique.
pseudonexie Une pseudonexie (symbole : $\pseudonexie$) est une non nexie qui entre dans une ligne et un rang avec des nexies.
relatif Un relatif (symbole : $\relatif$) est un syntagmatème qui est un connectif.
verbe Un verbe (symbole : $\verbe$) est une conjonction de nexus.
propria Les propria sont les cénématies qui entrent dans une seule et même cénie et dont le contenu est une pseudocaractéristique.